
Project Report
for

Automatic Random Regression
Testing with Human Oracle

Prepared by: Ivan Maguidhir, C00002614, April 2011

Table of Contents
Introduction..3
Description of Submitted Project...3
Description of Conformance to Specification and Design...3

Eclipse Plug-in...3
Interface...4
Compatibility...4

Windows..4
Localization...4

Learning..4
Technical..4

Lex & Yacc..4
CppUnit...5
C and C++...5
GCC, dlopen API..5
Apache Xerces XML library...5
Java, SWT...5

Personal..6
Review of Project...6

What went right...6
Code for walking parse trees...6
Joe Kehoe's multiple tests suggestion...6
Class for XML serialization ...7
Constants...7
Parameter and TestDatum ..7
Array of Pointers & Pointer To Array...7

What went wrong...7
Problems uncovered by the Java VM..7
Xerces XML parser Malfunction..8
Integer wrapping on 32-bit Linux...8
Some issues with Eclipse worth mentioning...9
Export of Eclipse plug-in..9

What I would have liked to include...9
Acknowledgements..9

2

Introduction
The purpose of this document is to provide an overview of:

• Whether or not the finished product matches the original specification and design

• Problems encountered and their solutions

• New information learned

• Features that I would have liked to include

Description of Submitted Project
The submitted project consists of:

• A library containing the core functionality of the software

• A command-line application

• A plug-in for Eclipse CDT which adds an additional menu to the IDE

Description of Conformance to Specification and Design

Eclipse Plug-in

I decided along with my project tutor to implement a plug-in for Eclipse. This work was additional
to the original specification. The reason for developing the plug-in was so that a developer using

3

Eclipse could generate tests from within her development environment. The plug-in provides a GUI
written in Java which uses the Standard Widget Toolkit (SWT).

Interface

In order to implement the Eclipse plug-in it was necessary to add a Java Native Interface to the
library component of the software so that the Java code running inside Eclipse could access the
required native C++ functions.

Compatibility

I wanted to write the project so that it would build on multiple architectures. Due to the constraint
of the project deadline and on the advice of my project tutor I decided to focus on getting the
application working on Linux.

Windows

The problems which need to be solved to build the application on Windows are:

• dlopen API for loading libraries dynamically does not exist. Calls to the dlopen API would
need to substituted with the Windows equivalent (e.g. LoadLibrary()).

• The software is currently written for use with GCC, users would need to have this installed
or the commands the software uses for compiling (in the Config class) would need to be
updated for use with a different compiler.

• The Apache Xerces-C library source-code would need to be added to the project and built
with it. On Linux a developer can install Xerces by building it themselves or downloading it
pre-built from a repository and it is installed at a standard location on disk.

Localization

The software does not fulfil the requirement of having translatable strings separated from code and
in an external XML file. Again this was due to time constraints as I wanted to focus on the main
functionality of the software. I really only included it in the Software Requirements Specification to
demonstrate I was aware it.

Learning

Technical

Lex & Yacc

I learned how to use Lex & Yacc properly to generate a parser. At the start of the year I was under
the impression that Lex & Yacc were used only once to generate code for a parser and that the
generated code was then modified until it performed the tasks required. I understand now that the
lexicon and grammar are the only things modified and that for each modification Lex & Yacc are
called again to generate new parser code. Additionally, I learned how to create parse trees and a
symbol table with Lex & Yacc which allow a developer to keep a record of terminal and non-
terminal symbols of interest after reductions have taken place.

4

CppUnit

I studied the history of xUnit framework and became familiar with the CppUnit implementation of
it for C++. As the implementations of xUnit for different languages are very similar I shouldn't have
much difficulty in writing tests for other languages that I'm familiar with or new languages that I
learn in the future. At the start of the year I had no experience of unit testing whatsoever.

C and C++

My knowledge of C and C++ increased during the year:

• Pointer to an array vs. Array of pointers
A pointer to an array is not the same thing as an array of pointers. Common-sense would
indicate that these are not the same, however I thought in C and C++ that they were the
same variable type. I'm sure I have encountered problems in the past as a result of thinking
this.

• A pointer points to a variable not a value
A few times while I was working on the code-generation part of the project I tried to use the
logical AND operator “&&” on a variable to reference it twice. I understand clearly now that
pointer variables of increasing indirection must be declared for each reference created.

• Union (only one member is used)
I didn't know this and I learned it the hard way while working on the project by having a
pointer as one member of a union, I had defined, on which delete was called if it was not
equal to NULL. If any of the other union members were set the pointer member was not
NULL.

• Struct bitfields
I learned that it is possible to set the maximum number of bits used by members of a struct
by placing a colon and integer constant, representing number of bits, after the declaration for
the member.

GCC, dlopen API

I became familiar with GCC and some of its options e.g. for setting paths, generating shared or
static libraries. I also learned how to use the dlopen API to load shared libraries, to find and call
specific functions within them and the significance of functions declared extern “C” to avoid
C++ name mangling.

Apache Xerces XML library

I became familiar with the Apache Xerces library for reading and writing XML. It is used in the
project for reading and writing both the configuration file and test database.

Java, SWT

I gained some experience of using Java and the Standard Widget Tool-kit while writing the plug-in
for Eclipse. My attitude towards Java has changed considerably due to this work. In particular, I
found it easy to fulfil quite complex requirements in a short space of time with very little debugging
required. This was in part due to the language itself and some “spoon-feeding” / hints provided by

5

the Eclipse IDE which is not available for C++. I intend to study Java further as a result.

Personal

• My professional experience so far has involved working on and extending existing code.
Having completed this project from scratch I am much more confident about my abilities.
This will assist me in job interviews etc.

• My knowledge of both C and C++ has increased since the start of the year. I'm delighted I
have had a further opportunity to study them as I will use both for any personal software
projects I undertake.

• In previous years in college I didn't produce adequate documentation for projects etc. largely
because I didn't feel it was very important. This year I have gained an understanding of what
is required in each document and why they are required. Nearly all of the details of the
implementation can be traced back to the Functional Specification and Design Manual. The
UML parts of both were especially helpful to me.

• Doing the presentation was an achievement for me as I generally become very nervous with
the anticipation of doing anything like it. It provided further confirmation for me that I
really enjoy talking about technology.

Review of Project

What went right

Code for walking parse trees

In early March I completely reworked my code for walking the function parse trees produced by
Lex & Yacc coupled with my callback functions. Previously this code consisted of a switch
statement to process the current node, and a loop to iterate through the node's children recursively
calling the same code. Walking the trees this way meant setting static bool flags to save properties
such as unsigned which would then be applied to the next type specifier found. I was worried I
would reach a point where there would be ambiguity about which item such flags should be applied
to. I rewrote the code for walking the parse trees to expect exact sequences of nodes and complain if
an unexpected sequence is encountered. To aid the development of this, I created a printTree()
function which provides a visual text representation of the hierarchy of a parse tree on the console. I
have left this function in the library to assist someone updating the grammar at a later stage. The
library can be modified to do nothing except provide these visual representations by defining the
VISUALIZE_PARSE_TREE symbol when compiling the library. As it turned out I was justified in
making this change, I would not have been able to support long double, array of pointers, pointer to
array or struct/union without it.

Joe Kehoe's multiple tests suggestion

During the project presentation Joe Kehoe suggested that the project should be able to vary the
number of sets of test data generated for each function. This feature was included in the Functional
Specification and Design Manual, however during implementation I had written a class Test which
represented both a test and the function the test was being carried out on – meaning there could only
be one test per function without causing problems (e.g. generating CppUnit code, listing tests by

6

function, grouping tests by function in the test database XML file). Correcting this involved
creating a new class to represent each function called Function. The library now returns a list of
Function objects to the developer which themselves contain an initially empty list of Test objects.
The developer can call createTest() on a Function object for each test they want to create.
Each of these calls returns a Test object.

Class for XML serialization

I wrote a class called XMLDocument which makes use of Apache Xerces while I was working on
the documentation at the start of the year. It is used in the project for both the configuration file and
test database.

Constants

In early March I modified the lexer to handle constants. This came about as a result of adding
support for arrays. In C, only the first dimension of an array may be specified without a constant
(e.g. char array[][5][5]) however all dimensions may be specified either (e.g.
char array[5][5][5]). Having written code for storing a multi-dimensional array as an array
with a single dimension I have learned that the size of the first dimension is not required for
converting to and from an absolute index. I suspect this has something to do with C/C++ feature
just mentioned but don't have time to investigate.

Parameter and TestDatum

There were initially separate classes in the project for representing function parameters (Parameter)
and individual test variables (TestDatum). There was a lot of duplication of the code for both of
these classes due to the fact that each test variable (TestDatum) is a parameter but with the extra
property of containing a value. In mid-March, I removed the duplication by making TestDatum a
subclass of the Parameter class. This proved to be even more beneficial when re-factoring the code
for serializing to and from XML to allow recursion; both classes can use the same code.

Array of Pointers & Pointer To Array

I discovered that there is a difference between an array of pointers and a pointer to an array. Array
of pointers is specified as char* array[5], whereas a pointer to an array is specified as
char (*array)[5]. I updated the project towards the end of March to make this distinction.

What went wrong

Problems uncovered by the Java VM

The following issues were uncovered by the Java VM and only occurred when the library was being
used by the Eclipse plug-in:

• Implicit declarations of callbacks for the Lex & Yacc parser for example an implicit
definition of void* createParseNode(), but the actual definition is
ParseNode* createParseNode(). Solution: Rewrite the callbacks to use void*,
explicitly declare the callbacks at the top of the Yacc grammar and cast to and from
ParseNode* inside the functions.

• The temporary library generated when getting the initial return value of a function could not

7

be loaded when the Java VM was running. Solution: Link libstdc++ to the temporary
generated library.

• Using the data member of std::wstring directly in my WideToMulti() function for
converting Unicode strings to multi-byte. Solution: Use the c_str() method of
std::wstring to retrieve its contents. This is the correct way to access std::string
data, my original code was invalid.

Xerces XML parser Malfunction

I had a problem traversing nodes in any reasonably large test database. This issue was present up to
and following the Project Presentation. The exact location of the exceptions changed when reading
different versions of the test database - but the exceptions always occurred inside the Xerces library.
I eventually discovered that the errors were caused by my own code during the loading of an XML
document. These are the steps I was performing:

• Instantiate a XercesParser object

• Parse the document

• XercesParser object goes out of scope and is destroyed

• Traverse the document

The issue was that the document object outlived the parser object. It appears that Xerces XML
document objects need to continue interacting with their parser object after they have been created.
I'm assuming that the reason the errors only occurred on larger documents then is because Xerces
does not read XML documents in their entirety but uses buffering.

After correcting the problem above I received no memory errors when testing with
Alleyoop/valgrind (a tool for detecting memory errors), where before their were many errors all
related to the Xerces XML library.

Integer wrapping on 32-bit Linux

I am developing the software on a 64-bit version of Linux. Towards the end of March I tested the
application on a 32-bit version of Linux. The random test values generated on the 32-bit platform
were incorrect. The reason for this was that I used long for storing the range of int values
believing that long always allows larger values than int. This is not the case on 32-bit Linux.
long and int use exactly the same number of bytes and support the same range of values. For this
reason my attempt to store the range of int values in a long resulted in integer
wrapping/overflow. I modified the code in question to use long long to store the range of int
values which works on both architectures. Out of interest, here are the sizes of integer and floating
point data-types in bytes on 32-bit and 64-bit Linux:

8

Type 32-bit Linux (bytes) 64-bit Linux (bytes)

short 2 2

int 4 4

long 4 8

long long 8 8

float 4 4

double 8 8

long double 12 16

Table 1: Data-type size differences on 32-bit and 64-bit Linux

Some issues with Eclipse worth mentioning

• After several hours of debugging and writing code with Eclipse CDT it can start to slow up
(e.g. windows do not come immediately into focus, delays when typing, indexer and syntax
highlighting incorrect). Sometimes it crashes altogether (e.g. Java errors, "unhandled loop
exception" was one I received) and requires a restart.

• Debugging with Eclipse is not as easy as with Visual Studio (e.g. the equivalent of Visual
Studio's Object Browser in Eclipse is not as sophisticated). Sometimes the debugger cannot
retrieve information for certain variables, sometimes it shows the contents of some other
variable that you have no interest in. An example of a variable type which cannot be
examined while debugging is the std::vector template.
The upside of this was that I was forced to desk check problematic code.

Export of Eclipse plug-in

I realised on the date of the original deadline that the Eclipse plug-in only worked / was activated
when run in the copy of Eclipse launched by Eclipse for debugging Eclipse plug-ins. I didn't think
this was due to any errors in my code so I had a look through the plug-in project in Eclipse and
discovered the “Export Wizard”. As it turns out, plug-in projects need to be exported using this tool
which packages them properly as a JAR file which can be dropped into the “plugin” folder of an
Eclipse installation. This is distinct from C / C++ executables which can simply be copied out of the
Debug or Release output folders and used.

What I would have liked to include

The following is a list of things I would have liked to implement but could not due to time
constraints:

• Support for paths containing spaces (i.e. between quotes)
• CppUnit test file naming specific to each user on the system. At present if two different

users on the same system attempt to create tests for the same code stored in the same place
on disk the CppUnit files generated for the first user will be overwritten for the second.

• A mechanism which protects the autounit software from serious errors which occur in a
user's code (e.g. segmentation fault). A solution might be to run the user's code as a separate
process and obtain the data for the result of each function through a pipe. This problem can

9

present itself when the NULL pointer generation feature is enabled.
• Additional C language support, for example: typedef, global variables, preprocessor

statements, external declarations, and type qualifiers: extern and const

• Code parsing, examining the compound statement of each function in order to determine if
global variables are used

• Ability, in the Eclipse plug-in GUI, to toggle between NULL pointer and valid pointer for
pointer variables in the expected result

• Improved GUI for the Eclipse plug-in

Acknowledgements
Many thanks to Chris Meudec for his help and guidance throughout the year.

10

	Introduction
	Description of Submitted Project
	Description of Conformance to Specification and Design
	Eclipse Plug-in
	Interface
	Compatibility
	Windows
	Localization

	Learning
	Technical
	Lex & Yacc
	CppUnit
	C and C++
	GCC, dlopen API
	Apache Xerces XML library
	Java, SWT

	Personal

	Review of Project
	What went right
	Code for walking parse trees
	Joe Kehoe's multiple tests suggestion
	Class for XML serialization
	Constants
	Parameter and TestDatum
	Array of Pointers & Pointer To Array

	What went wrong
	Problems uncovered by the Java VM
	Xerces XML parser Malfunction
	Integer wrapping on 32-bit Linux
	Some issues with Eclipse worth mentioning
	Export of Eclipse plug-in

	What I would have liked to include

	Acknowledgements

